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ABSTRACT
Cross-domain recommendation (CDR) aims to leverage the source
domain information to provide better recommendation for the tar-
get domain, which is widely adopted in recommender systems
to alleviate the data sparsity and cold-start problems. However,
existing CDR methods mostly focus on designing effective model
architectures to transfer the source domain knowledge, ignoring the
behavior-level effect during the loss optimization process, where be-
haviors regarding different aspects in the source domain may have
different importance for the CDR model optimization. The igno-
rance of the behavior-level effect will cause the carefully designed
model architectures ending up with sub-optimal parameters, which
limits the recommendation performance. To tackle the problem,
we propose a generic behavioral importance-aware optimization
framework for cross-domain recommendation (BIAO). Specifically,
we propose a behavioral perceptron which predicts the importance
of each source behavior according to the corresponding item’s
global impact and local user-specific impact. The joint optimization
process of the CDR model and the behavioral perceptron is formu-
lated as a bi-level optimization problem. In the lower optimization,
only the CDR model is updated with weighted source behavior loss
and the target domain loss, while in the upper optimization, the
behavioral perceptron is updated with implicit gradient from a de-
veloping dataset obtained through the proposed reorder-and-reuse
strategy. Extensive experiments show that our proposed optimiza-
tion framework consistently improves the performance of different
cross-domain recommendation models in 7 cross-domain scenarios,
demonstrating that our method can serve as a generic and powerful
tool for cross-domain recommendation1.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Recommender systems aim to provide personalized recommenda-
tion to users according to their historical behaviors, and have played
an important role in various applications [6, 28]. However, the ex-
isting recommender systems often suffer from the data sparsity and
the cold-start problems [8, 9, 28, 29, 31], where the data sparsity
problem is caused by the insufficient user-item interaction records
and the cold-start problem is generally caused by the new users.
To address these problems, cross-domain recommendation, which
improves the recommendation accuracy in the target domain by
utilizing the user’s behaviors in the source domain, has achieved
great success recently [8, 12, 20, 27].

Existing cross-domain recommendation(CDR) methods mainly
focus on designing effective model architectures to transfer knowl-
edge from the source domain to the target domain. In particular,
EMCDR-based methods [18, 33] aim to share the knowledge in
the user’s embedding, where in each domain the user’s embed-
ding is optimized with the source and target recommendation loss
respectively, and then different mapping functions like global non-
linear function [18] and user-specific function [33] are learned to
align the user’s embedding in two domains. However, the transfer
mechanism of EMCDR simply focuses on user embedding mapping,
limiting their performance in recommendation. More advanced ar-
chitectures [8, 12, 13, 17, 20] are recently proposed for more precise
cross-domain recommendation. CoNet [8] adopts the cross-stitch
structure in multi-task learning to transfer the source features to
the target domain. MiNet [20] and DASL [12] design different kinds
of attentive mechanisms to select the target-domain-related inter-
est from the source behaviors. These methods [8, 12, 13, 17, 20]
share not only user embedding but also deep model parameters
through utilizing the joint loss of both the source and target domain
to optimize the whole model, and thus achieve promising target
recommendation performance.

Despite the effectiveness of the existing methods, they neglect
the fact that behaviors regarding different aspects in the source
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domain may have different importance for the CDR model opti-
mization. They lack the behavior-level consideration for the joint
loss to be optimized, which leads to sub-optimal model parameters
for the carefully designed CDR models. Specifically, the joint loss
adopted by existing works [8, 12, 13, 17, 20, 26, 30] is generally
obtained as follows, (1) average the losses of all the behaviors in
the target/source domain to obtain the target/source loss, (2) use a
hyper-parameter weighted to the source loss to balance informa-
tion from the two domains, (3) and add the two loss terms together
to obtain the joint loss. However, an appropriate behavior-level
consideration requires that not only should the losses between two
domains be balanced, but the loss of each behavior in the source do-
main should also be balanced. For example, if we want to utilize the
user’s behavior in the book domain to help recommendation in the
target toy domain, interacting with the books related to “children”
or “toy stories” can provide beneficial information to the target do-
main, but interacting with “love story” books provides little helpful
information. Additionally, as indicated by Man et al. [18], using
the losses of users that have only few interactions in the source
domain tend to harm the target domain recommendation accuracy.
Therefore, existing works averaging the source behavior losses
without behavior-level consideration fail to filter out the harmful
information, thus only obtaining sub-optimal parameters for the
carefully designed model architectures.

To address the problem, we propose to consider behavior-level
importance through assigning an individual importance weight to
each source behavior loss, which faces two challenges.

• When assigning a proper behavior-level importance, we will
have to decide millions of hyper-parameters for each of the
millions of source behaviors if each weight is regarded as a
hyper-parameter, which brings explosive computational cost.
• Even though we can reduce the number of required hyper-
parameters to an affordable level, it still remains a problem
how we optimize the reduced hyper-parameters.

To tackle the challenges, we propose a generic behavioral importance-
aware optimization framework (BIAO) for cross-domain recommen-
dation, which involves a novel behavioral perceptron for the first
challenge and a tailored bi-level optimization algorithm for the
second challenge. The proposed behavioral perceptron learns the
importance of each source behavior (i.e., a user-item pair) according
to the item’s global impact on the target domain as well as its local
impact on a specific user, where the former is modeled by a global
MLP and the latter is modeled with self-attention followed by a local
MLP, which reduces the required hyper-parameters from million
level to thousand level. The tailored bi-level optimization algorithm
jointly optimizes the recommendation model parameters and the
behavioral perceptron parameters. In the lower optimization, we
utilize the target loss together with the importance weighted source
loss to optimize the recommendation model parameters, while in
the upper optimization, we update the perceptron parameters with
implicit gradient from a developing dataset obtained through the
designed reorder-and-reuse strategy. This strategy makes full use
of all the target behaviors both in the upper and lower optimiza-
tion, alleviating the potential bias and information loss in previous
bi-level optimization works [2, 15]. The proposed behavioral per-
ceptron is learned in a bi-level data-driven manner, thus being

generic enough to automatically fit different recommendation mod-
els and datasets. Extensive experiments and analysis show that our
proposed BIAO framework consistently improves the performance
of different cross-domain recommendation models in seven cross-
domain scenarios. Our contributions are summarized as follows,

• To the best of our knowledge, we are the first to consider
behavior-level effect through assigning an individual im-
portance weight to each source domain behavior loss for
cross-domain recommendation.
• Wepropose a generic behavioral importance-aware optimiza-
tion (BIAO) framework for cross-domain recommendation,
which includes a novel behavioral perceptron and a tailored
effective bi-level optimization algorithm.
• We conduct extensive experiments with different models on
different datasets. Empirical results show that our proposed
BIAO framework brings consistent performance improve-
ment, demonstrating its ability to serve as a generic and
powerful tool for cross-domain recommendation.

2 RELATEDWORK
In this section, we review related work for cross-domain recom-
mendation and bi-level optimization.

Cross-Domain Recommendation. Cross-domain recommenda-
tion aims to utilize the source domain information to provide more
precise recommendation to users in the target domain. A line of
typical methods are based on EMCDR [1, 10, 18, 32, 33]. The origi-
nal EMCDR [18] utilizes the latent factor model to learn the user’s
embedding in the source domain and target domain respectively.
Then a non-linear mapping from the source user embedding to
the target domain is learned to transfer the knowledge. [32] pro-
poses task-oriented loss to utilize the mapped embedding to predict
the target behavior instead of target user embedding. [33] further
proposes a personalized mapping function for each user and [10]
gives a more reasonable metric learning for EMCDR. However,
the EMCDR-based methods simply consider the user embedding
mapping, limiting its performance in recommendation. More ad-
vanced cross-domain recommendation models were proposed re-
cently [8, 12, 17, 20, 26]. CoNet [8] adopts the cross-stitch structure
in multi-task learning to share the features between the source and
target domain. 𝜋-Net [17], MiNet [20] and DASL [12] considers the
sequential cross-domain recommendation, where attention mecha-
nisms are adopted to select the useful source information. Despite
the effectiveness of the proposed models, they simply utilize the
linear combination of the source loss and the target loss to optimize
the model, ignoring different impacts of behaviors in the source
domain. To further exploit the potential of these models, we pro-
pose to conduct the behavioral importance-aware optimization for
cross-domain recommendation.

Bi-level Optimization. The bi-level optimization problem arises
in many scenarios of deep learning, like meta learning [5, 21], neu-
ral architecture search [14], and auxiliary learning [2, 3, 19]. To
conduct the upper optimization, some works adopt the unrolled dif-
ferentiation to calculate the upper-level gradient [4, 23]. However,
several steps of unrolling will be memory-consuming [15] and the
efficient one-step unrolling will suffer from short horizons [25]. The
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Figure 1: The schematic diagram of typical CDR models.

implicit gradient is another widely adopted strategy for bi-level op-
timization. However, to fully obtain the implicit gradient, it needs to
obtain the inverse of the Hessian matrix, which is computationally
exhausted for deep models. Several works try to approximate the
inverse of the Hessian, like using identity matrix [16], conjugate
gradient [22] and truncated Neumann series [15]. All these methods
generally split the training dataset into two disjoint subsets for the
lower and upper optimization, which easily causes bias in the upper
optimization and information loss in the lower optimization. In this
paper, we adopt [15] to optimize the proposed novel behavioral
perceptron, but propose a reorder-and-reuse strategy to alleviate
the potential bias and information loss problems.

3 THE PROPOSED METHOD
In this section, we present preliminaries, the proposed behavioral
perceptron and the effective optimization strategy.

3.1 Preliminaries
Assuming that there exists a set of users𝑈 that have interactions
with items in both the source domain 𝑆 and the target domain 𝑇 .
The widely CDR model schematic diagram is shown in Figure 1.
The CDR dataset includes a source behavior set 𝐵𝑠 and a target
behavior set 𝐵𝑡 , which contains several user-item behavior pairs for
training. The CDR model generally contains the user’s profile 𝑃𝑢
(like user ID or age), the candidate item in the source domain 𝑠 𝑗 , the
candidate item in the target domain 𝑡𝑖 , and some other source/target
features 𝐹𝑢,𝑠 𝑗 /𝐹𝑢,𝑡𝑖 as input, where (𝑢, 𝑠 𝑗 ) is a behavior from the
source behavior set 𝐵𝑠 and (𝑢, 𝑡𝑖 ) is from the target behavior set 𝐵𝑡 .
The other features in the source/target domain 𝐹𝑢,𝑠 𝑗 /𝐹𝑢,𝑡𝑖 could be
some historical sequential features for sequential recommendation.
The CDRmodel parameters \ generally includes target-only/source-
only parameters \𝑡 /\𝑠 , like the final predictor of each domain in
MiNet [20] or CoNet [8], and the shared parameters by both do-
mains \𝑐 , like the user profile embedding. Given the input data and
the CDR model, the loss of the target behavior 𝐿𝑢,𝑡𝑖 and the loss of
the source behavior 𝐿𝑢,𝑠 𝑗 will be calculated. Finally, the loss of all
the source behaviors and all the target behaviors are added together
with a balanced factor 𝛾 , and the loss sum is used to optimize the
CDR model parameters \ :∑︁

(𝑢,𝑡𝑖 ) ∈𝐵𝑡
𝐿𝑢,𝑡𝑖 (\𝑡 ;\𝑐 ) + 𝛾

∑︁
(𝑢,𝑠 𝑗 ) ∈𝐵𝑠

𝐿𝑢,𝑠 𝑗 (\𝑠 ;\𝑐 ) . (1)

The current methods only rely on a global hyper-parameter 𝛾
to balance the source and target information. However, the dif-
ferences of different behaviors (𝑢, 𝑠 𝑗 ) ∈ 𝐵𝑠 to the target domain
recommendation are ignored, leading to sub-optimal \ .
Note: Although the source and target loss are optimized together,
CDR model only cares about the performance in the target domain.

3.2 The Behavioral Perceptron
To conduct the behavioral importance-aware optimization, our
proposed optimization objective is as follows,

min
\

∑︁
(𝑢,𝑡𝑖 ) ∈𝐵𝑡

𝐿𝑢,𝑡𝑖 (\𝑡 ;\𝑐 ) +
∑︁

(𝑢,𝑠 𝑗 ) ∈𝐵𝑠
𝛾𝑢 𝑗𝐿𝑢,𝑠 𝑗 (\𝑠 ;\𝑐 ), (2)

where each source behavior loss is given an individual weight so
that the beneficial behavior can be preserved while the harmful
ones are discarded. Currently, the most important problem is how to
decide the weights 𝛾𝑢 𝑗 for the source-domain behavior. We propose
a behavioral perceptron to perceive the importance of each behavior,
whose structure is shown in Figure 2.

Specifically, for a behavior (𝑢, 𝑠 𝑗 ) in the source domain, the be-
havioral perceptron judges its importance from the global impor-
tance of 𝑠 𝑗 to the target domain and the local importance of 𝑠 𝑗 to
user 𝑢 as follows.

Global item importance. Since different kinds of items in the
source domain have different impacts on the target domain, e.g.,
“cartoon” books are more beneficial than “love story” books when
the target domain is toy, we adopt a multi-layer-perceptron(MLP)
to map the features of 𝑠 𝑗 to its importance weight. We concatenate
all fields of its features like its ID, category, etc. to an embedding
𝐸𝑠 𝑗 , and then the global item weight is obtained as follows,

𝛾1,𝑢 𝑗 = 𝑀𝐿𝑃 (𝐸𝑠 𝑗 ;𝜙𝐺 ), (3)

where 𝜙𝐺 is the learnable parameters of the global MLP. Since
this weight captures the importance of item 𝑠 𝑗 to the whole target
domain, we call it the global importance.

User-specific item importance. Besides the item information,
we also judge the importance of (𝑢, 𝑠 𝑗 ) from the user’s historical
interactions. If 𝑠 𝑗 is more related to user’s recent interactions, the
(𝑢, 𝑠 𝑗 ) behavior should be highly weighted. Specifically, the recent
𝑁 interactions of user 𝑢 in the source domain are [𝑥1

𝑆
, 𝑥2
𝑆
, · · · , 𝑥𝑁

𝑆
],

and in the target domain are [𝑥1
𝑇
, 𝑥2
𝑇
, · · · , 𝑥𝑁

𝑇
]. We first map each

of the historical items to its embedding, and obtain [𝑒1
𝑆
, 𝑒2
𝑆
, · · · , 𝑒𝑁

𝑆
]

and [𝑒1
𝑇
, 𝑒2
𝑇
, · · · , 𝑒𝑁

𝑇
]. To make the perceptron find the interest

that is related to 𝑠 𝑗 , we concatenate the embedding 𝐸𝑠 𝑗 to each
of item embedding in the two historical sequences, and we obtain
[𝑒1
𝑆,𝑗
, 𝑒2
𝑆,𝑗
, · · · , 𝑒𝑁

𝑆,𝑗
] and [𝑒1

𝑇,𝑗
, 𝑒2
𝑇,𝑗
, · · · , 𝑒𝑁

𝑇,𝑗
], where 𝑒𝑖

𝑆,𝑗
= [𝑒𝑖

𝑆
;𝐸𝑠 𝑗 ]

and 𝑒𝑖
𝑇 ,𝑗

= [𝑒𝑖
𝑇
;𝐸𝑠 𝑗 ] for 𝑖 ∈ {1, 2, · · · , 𝑁 }. After obtaining the

item-aware historical embeddings, we use two Multi-head Atten-
tion(MHA) [24] modules to extract the user’s recent interest about
𝑠 𝑗 in the source and target domain respectively.

[𝑚1
𝑆,𝑗 ,𝑚

2
𝑆,𝑗 , · · · ,𝑚

𝑁
𝑆,𝑗 ] = 𝑀𝐻𝐴𝑆 ( [𝑒

1
𝑆,𝑗 , 𝑒

2
𝑆,𝑗 , · · · , 𝑒

𝑁
𝑆,𝑗 ];𝜙𝑠 ), (4)

[𝑚1
𝑇,𝑗 ,𝑚

2
𝑇,𝑗 , · · · ,𝑚

𝑁
𝑇,𝑗 ] = 𝑀𝐻𝐴𝑇 ( [𝑒

1
𝑇,𝑗 , 𝑒

2
𝑇,𝑗 , · · · , 𝑒

𝑁
𝑇,𝑗 ];𝜙𝑡 ), (5)

where𝜙𝑠 and𝜙𝑡 are the parameters ofMHA. After theMHAprocess,
we use mean pooling to obtain the recent source/taregt interest
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\ . In the upper optimization, we only use the loss on the reordered target set 𝐿𝑑𝑒𝑣 (\∗ (𝜙)) to update 𝜙 with the implicit gradient.

about 𝑠 𝑗 , which are 𝑚𝑆,𝑗 and 𝑚𝑇,𝑗 . Then we concatenate them
together and use an MLP to obtain the final importance as follows,

𝑚𝑆,𝑗 =
1
𝑁

𝑁∑︁
𝑖=1

𝑚𝑖𝑆,𝑗 ,𝑚𝑇,𝑗 =
1
𝑁

𝑁∑︁
𝑖=1

𝑚𝑖𝑇 ,𝑗 , (6)

𝛾2,𝑢 𝑗 = 𝑀𝐿𝑃 ( [𝑚𝑆,𝑗 ;𝑚𝑇,𝑗 ];𝜙𝐿), (7)

where 𝜙𝐿 is the paramters of the local MLP. This importance con-
siders the information from the specific user 𝑢, and we call it the
local user-specific importance.

Finally, we multiply the two importance weights and obtain the
final importance of (𝑢, 𝑠 𝑗 ):

𝛾𝑢 𝑗 (𝜙) = 𝛾 · 𝜎 (𝛾1,𝑢 𝑗 · 𝛾2,𝑢 𝑗 ), (8)

where 𝜎 is the normalization function, 𝛾 is the learnable global
scalar to balance information of the two domains, and 𝛾𝑢 𝑗 is a
function of 𝜙 , and 𝜙 = {𝜙𝐺 , 𝜙𝑠 , 𝜙𝑡 , 𝜙𝐿, 𝛾} contains all the behav-
ioral perceptron parameters. Compared to directly assigning each
source behavior a weight which requires millions of parameters, the
behavior perceptron only involves several fully connected layers.
Assuming that the embedding dimension of the item is 𝑑(typical
value 32 or 64), the behavioral perceptron only requires 𝑂 (𝑑2) pa-
rameters, which is thousand level. However, how to optimize 𝜙
still remains a problem. Directly using Eq. (2) to optimize 𝜙 will
easily cause 𝛾𝑢 𝑗 to be zero, a trivial solution that cannot utilize the
source loss information. Next, we present our bi-level optimization
framework that jointly optimizes \ and 𝜙 .

3.3 Overall Bi-level Optimization Formulation
The proposed behavioral importance-aware optimization frame-
work is shown in Figure 2. Note that our ultimate goal is to obtain
the optimal behavioral perceptron parameters 𝜙 which can select
the most beneficial source behaviors to optimize the CDR model \ ,
so that the CDRmodel performs best in the target domain. This goal

can be formulated as a bi-level optimization problem as follows,

𝜙∗ = argmin
𝜙
𝐿𝑑𝑒𝑣 (\∗ (𝜙)), (9)

𝑠 .𝑡 . \∗ (𝜙) = argmin
\
𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙),

where 𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙) is the loss in Eq. (2) with 𝛾𝑢 𝑗 obtained through
Eq. (8). The lower optimization aims to find the optimal \∗ (𝜙) that
minimizes 𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙), i.e., optimize the CDR model parameters
when the behavioral perceptron is fixed. Note that if 𝜙 changes,
\∗ will also be changed, so \∗ is an implicit function of 𝜙 , and we
denote it as \∗ (𝜙). 𝐿𝑑𝑒𝑣 (\∗ (𝜙)) is the loss of the CDR model on a
new developing dataset 𝐵′𝑡 in the target domain. Assuming that
if we can obtain an additional dataset in the target domain, our
final optimization goal is that the CDR model \∗ (𝜙) can achieve
the best performance on the new developing target dataset, whose
function is just like the validation dataset. Later we will explain
how existing works and how we obtain the additional developing
target dataset. Now, we still focus on how to conduct the lower and
the upper optimization in Eq. (9).
Lower Optimization. The lower optimization is quite straightfor-
ward. With the parameters of the behavioral perceptron 𝜙 fixed,
we can use any optimizer like SGD or Adam [11] to optimize \ , so
that 𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙) is minimized.
Upper Optimization. The upper optimization is a little more com-
plex, since 𝐿𝑑𝑒𝑣 (\∗ (𝜙)) is the loss on the target domain and it
directly relies on \ instead of 𝜙 . We cannot use the autograd tools
like SGD to calculate ∇𝜙𝐿𝑑𝑒𝑣 (\∗ (𝜙)). Therefore, considering that
\∗ (𝜙) is an implicit function of 𝜙 , we utilize the chain rule to obtain
the implicit gradient as follows,

∇𝜙𝐿𝑑𝑒𝑣 (\∗ (𝜙)) = ∇\𝐿𝑑𝑒𝑣 (\∗ (𝜙))∇𝜙\∗ (𝜙), (10)

where ∇\𝐿𝑑𝑒𝑣 (\∗ (𝜙)) is easily obtained using the autograd tools
and our target now is to obtain ∇𝜙\∗ (𝜙). Note that \∗ (𝜙) is the
minimal point of 𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙), so we have:

∇\𝐿𝑡𝑟𝑎𝑖𝑛 (\∗ (𝜙), 𝜙) = 0. (11)
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Further calculating the gradient with respect to 𝜙 in both sides of
Eq. (11), we can obtain the following results:

∇2
\
𝐿𝑡𝑟𝑎𝑖𝑛 (\∗ (𝜙), 𝜙)∇𝜙\∗ (𝜙) + ∇𝜙∇\𝐿𝑡𝑟𝑎𝑖𝑛 (\∗ (𝜙), 𝜙) = 0. (12)

Therefore, the gradient ∇𝜙\∗ (𝜙) can be obtained as follows (we
omit the parameters in 𝐿𝑡𝑟𝑎𝑖𝑛 for the sake of brevity.),

∇𝜙\∗ (𝜙) = −(∇2\𝐿𝑡𝑟𝑎𝑖𝑛)
−1∇𝜙∇\𝐿𝑡𝑟𝑎𝑖𝑛 . (13)

However, (∇2
\
𝐿𝑡𝑟𝑎𝑖𝑛)−1, the Hessian inverse of the CDR model(a

neural network), is usually intractable. We adopt the 𝐾-truncated
Neumann series to approximate this inverse, where (∇2

\
𝐿𝑡𝑟𝑎𝑖𝑛)−1 =∑∞

𝑛=0 (𝐼 − ∇2\𝐿𝑡𝑟𝑎𝑖𝑛)
𝑛 ≈ ∑𝐾

𝑛=0 (𝐼 − ∇2\𝐿𝑡𝑟𝑎𝑖𝑛)
𝑛 . With these deriva-

tions, we can obtain the upper implicit gradient ∇𝜙𝐿𝑑𝑒𝑣 as follows,

∇𝜙𝐿𝑑𝑒𝑣 = −∇\𝐿𝑑𝑒𝑣 ·
𝐾∑︁
𝑛=0
(𝐼 − ∇2

\
𝐿𝑡𝑟𝑎𝑖𝑛)𝑛 · ∇𝜙∇\𝐿𝑡𝑟𝑎𝑖𝑛, (14)

which can be efficiently calculated by the vector-Jacobi product [15].
Now, we can jointly optimize the CDR model parameters \ and

the behavioral perceptron parameters 𝜙 . Specifically, in the lower
optimization, with 𝜙 fixed, we update the CDR parameters \ with
the popular optimizer like SGD or Adam until convergence, and
obtain the optimal \∗ (𝜙). When the optimal \∗ (𝜙) is reached, we
switch to the upper optimization and use the gradient in Eq. (14)
to update the perceptron parameters 𝜙 . The lower and upper opti-
mization are conducted in an alternating way until convergence.

3.4 The Practical Optimization Algorithm
Note that the optimization strategy discussed so far is still con-

ducted on the whole dataset, which is impractical in real recommen-
dation scenarios. Additionally, conducting the lower optimization
until \ converges in each loop is inefficient and how to obtain the
additional developing target dataset 𝐵′𝑡 still remains unresolved.
To tackle these problems, we present a practically efficient and
effective solution of our optimization algorithm in Algorithm 1.
Note that there are three key points that make the algorithm more
practical and efficient compared to previous theoretical analyses.

Batch Optimization. Note that in both the lower and upper
optimization, we fetch batches from the whole dataset to calculate
the loss and the gradient of parameters. Since we always cannot
calculate the gradient of the whole dataset due to memory limit,
this kind of batch optimization has been widely adopted in current
deep learning and is also effective for the bi-level optimization.

Interval rounds of lower optimization instead of conver-
gence. Theoretically, with fixed 𝜙 , we need to train the \ to its
optimal point \∗ (𝜙) and then we can conduct the upper optimiza-
tion to update 𝜙 . However, it is quite time-consuming because each
time we update 𝜙 , we need to experience a new complete lower
training process. To make the algorithm more effective, we only
conduct a fixed 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 rounds of lower optimization for approxi-
mation, which is found effective in previous works [2, 15, 19].

The reorder-and-reuse strategy. As we mentioned before, we
need an additional developing target dataset to calculate𝐿𝑑𝑒𝑣 (\∗ (𝜙)).
Previous works [2, 15, 19] usually split a small dataset 𝐵′𝑡 from the
target dataset 𝐵𝑡 . These works use the rest set 𝐵𝑡 −𝐵′𝑡 for lower opti-
mization and 𝐵′𝑡 for upper optimization. However, this kind of split
easily causes bias in the upper optimization and information loss

Algorithm 1 The BIAO Algorithm.
Input: source behavior set 𝐵𝑠 , target behavior set 𝐵𝑡 , interval between
two upper optimizations 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , lower and upper learning rate [1, [2,
lower optimizer 𝑜𝑝𝑡1, Neumann series truncated number 𝐾 ;
Initialize: CDR model parameter \ , behavioral perceptron parameter 𝜙 ;
// the reorder and reuse trick
𝐵′𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠ℎ𝑢𝑓𝑓 𝑙𝑒 (𝐵𝑡 )
// the alternating lower and upper optimization loop
while not converged do

// lower optimization
for 𝑟𝑜𝑢𝑛𝑑 = 1 to 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 do

fetch train data batch 𝑏𝑠 = 𝑓𝑒𝑡𝑐ℎ (𝐵𝑠 ), 𝑏𝑡 = 𝑓𝑒𝑡𝑐ℎ (𝐵𝑡 ) ;
for each behavior (𝑢, 𝑠 𝑗 ) ∈ 𝑏𝑠 and (𝑠, 𝑡𝑖 ) ∈ 𝑏𝑡 do
𝐿𝑢,𝑠 𝑗 = 𝐶𝐷𝑅 (𝑢, 𝑠 𝑗 ;\ ) , 𝐿𝑢,𝑡𝑖 = 𝐶𝐷𝑅 (𝑢, 𝑡𝑖 ;\ ) ;
obtain 𝛾𝑢𝑗 (𝜙 ) using Eq. (3) - (8);

end for
𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙 ) =

∑
(𝑢,𝑡𝑖 ) ∈𝑏𝑡 𝐿𝑢,𝑡𝑖 (\ ) +

∑
(𝑢,𝑠 𝑗 ) ∈𝑏𝑠 𝛾𝑢𝑗 (𝜙 )𝐿𝑢,𝑠 𝑗 (\ ) ;

\ ← 𝑜𝑝𝑡1(𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙 ) ,[1)
end for
// upper optimization
fetch dev data batch: 𝑏′𝑡 = 𝑓𝑒𝑡𝑐ℎ (𝐵′𝑡 )
𝐿𝑑𝑒𝑣 (\ ) =

∑
(𝑢′,𝑡 ′

𝑖
) ∈𝑏′𝑡 𝐿𝑢′,𝑡

′
𝑖
(\ ) ;

fetch a new train data batch: 𝑏𝑛𝑠 = 𝑓𝑒𝑡𝑐ℎ (𝐵𝑠 ), 𝑏𝑛𝑡 = 𝑓𝑒𝑡𝑐ℎ (𝐵𝑡 )
for each behavior (𝑢, 𝑠 𝑗 ) ∈ 𝑏𝑛𝑠 and (𝑠, 𝑡𝑖 ) ∈ 𝑏𝑛𝑡 do
𝐿𝑢,𝑠 𝑗 = 𝐶𝐷𝑅 (𝑢, 𝑠 𝑗 ;\ ) , 𝐿𝑢,𝑡𝑖 = 𝐶𝐷𝑅 (𝑢, 𝑡𝑖 ;\ ) ;
obtain 𝛾𝑢𝑗 (𝜙 ) using Eq. (3) - (8);

end for
𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙 ) =

∑
(𝑢,𝑡𝑖 ) ∈𝑏𝑛𝑡 𝐿𝑢,𝑡𝑖 (\ ) +

∑
(𝑢,𝑠 𝑗 ) ∈𝑏𝑛𝑠 𝛾𝑢𝑗 (𝜙 )𝐿𝑢,𝑠 𝑗 (\ ) ;

//efficient vector-Jacobi calculation for Eq. (14)
𝑣 = 𝑝 = ∇\𝐿𝑑𝑒𝑣 (\ ) ;
for 𝑛 = 1 to 𝐾 do
𝑣 = 𝑣 − 𝑣 · ∇2

\
𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙 )

𝑝 = 𝑝 + 𝑣
end for
∇𝜙𝐿𝑑𝑒𝑣 (\ ) = −𝑝∇𝜙∇\𝐿𝑡𝑟𝑎𝑖𝑛 (\ ;𝜙 )
𝜙 ← 𝜙 − [2∇𝜙𝐿𝑑𝑒𝑣 (\ ) ;

end while
Return \∗ (𝜙∗ )

in the lower optimization. Specifically, in the upper optimization,
we expect \∗ (𝜙) has best performance on the developing dataset. If
this developing dataset is only a small dataset split from the target
dataset, it may only contain information of part of the users or
items, thus easily biased. In the lower optimization in Figure 1, we
note that the target-only parameter \𝑡 is only optimized with the
target loss. If we only use 𝐵𝑡 − 𝐵′𝑡 in the lower optimization, \𝑡 will
easily become sub-optimal because of the lost information in 𝐵′𝑡 .
To tackle this problem, we propose the reorder-and-reuse strategy
thanks to batch optimization. We reorder the target dataset 𝐵𝑡 and
obtain the dataset 𝐵′𝑡 and use this reordered dataset to calculating
𝐿𝑑𝑒𝑣 (\∗ (𝜙)). This reordered dataset on the whole is the same as
𝐵𝑡 which cannot be regarded as a validation set when using the
whole dataset for optimization, but luckily, we adopt batch opti-
mization, so the batch 𝑏𝑡 from 𝐵𝑡 used in the lower optimization
is different from the batch 𝑏′𝑡 from the reordered 𝐵′𝑡 in the upper
optimization, and 𝑏′𝑡 can be regarded as a validation batch used to
tune 𝜙 . With this strategy, we can reuse 𝐵𝑡 to effectively conduct
the bi-level optimization without requiring additional data in the
target domain. The superiority of the reorder-and-reuse strategy
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compared to previous methods is validated in the experiments. The
schematic diagram of the reorder-and-reuse strategy and previous
methods is in Appendix C.

4 EXPERIMENTAL RESULTS
In this section, we empirically assess the efficacy of our proposed
method on various datasets with different base models. Additionally,
we provide ablations to show how our proposed method works.

4.1 Dataset
We conduct our experiments on the Amazon datasets [7], which
contain users with their behaviors in different domains like book,
movie and clothing. Specifically, to validate the generalization abil-
ity of our proposed method, we totally choose 7 domains from
the Amazon datasets, which are Books, Movies, CDs, Cloth, Elec-
tronics(Elec), Home&Kitchen(Kitchen) and Toys. Based on these
selected domains, we create 7 source-target cross-domain scenarios,
i.e., Books-Movies, Books-CDs, Books-Elec, Books-Toys, CDs-Cloth,
CDs-Kitchen, Elec-Cloth. These scenarios include both the intu-
itively highly-correlated domains like Books-Movies and intuitively
less correlated domains like Elec-Cloth. The behaviors of the source
and target domains are filtered by the common users between do-
mains. Detailed statistics of the filtered datasets are presented in
the appendix. The target domain behavior numbers of different
scenarios are also quite different, e.g., the target behavior number
of Books-Movies is 792,319 and CDs-Cloth only 36,319. The dataset
split for the target domain is the same as that of [8, 20], where the
test set is composed of the last behavior of each user, the validation
set is composed of the second to last behavior, and the rest behav-
iors belong to the training set. The feature adopted for each user
is its ID information, and the features for each item contain both
its ID and category. Note that we keep the users with less than 5
ratings and items without metadata, different from [20], and thus
our setting is closer to real scenarios.

4.2 Competitors and Evaluation Metrics
We choose CoNet [8] and MiNet [20], two typical models for cross-
domain recommendation, as our basemodels, to whichwe apply our
proposed method. Additionally, we also investigate other variants
of the two base models to better present how the source domain
information influences the model performance. Specifically, details
of different models are as follows,
• CoNet [8] is a cross-domain recommendation model which
adopts the cross-stitch structure in multi-task learning to
share information between the source and target domain.
• MiNet [20] jointly considers the user’s long-term interest
across domains, short term interest from the target domain
and the source domain with attentive mechanisms.
• Base-0 indicates the variant that keeps the source branch
information from the base model, but sets the coefficient for
the source domain loss to 0.0, where the base model can be
CoNet or MiNet. This variant can be used to validate whether
the loss on the source domain can help the cross-domain
recommendation, and can be regarded as the version where
we only use the source domain features to help the target
domain recommendation.

• Base-S indicates the variant that removes the source branch
information from the base model. This variant not only re-
moves the source loss, but also removes the features from
the source domain. This variant is a single-domain version
of the base model.
• Base+ours is the variant that utilizes our proposed BIAO
method to reweight the loss of each source behavior.

We adopt AUC and RelaImpr, the same metrics as that of [20], to
evaluate the models. Higher values indicate better performances.

4.3 Implementation
We implement all the methods with PyTorch. We optimize all the
base models with Adam [11] optimizer, whose learning rate is
searched from {1e-3, 5e-3, 1e-2} to fit different datasets, where the
batch size is the same as that of the original paper. As for the hyper-
parameters in the upper optimization, the truncated number 𝐾 is
fixed to 3 as adopted by previous works [2, 15], the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 for
conducting upper optimization is searched from {20, 100, 500}, the
length of the historical sequence used in the behavioral perceptron
is 20 for MiNet and 50 for CoNet, the head number of the multi-
head attention is 4, and the adopted upper optimizer is SGD with
learning rate 1e-2 for all the scenarios. Note that the embedding
table used in the perceptron is the same as that of the CDR model,
but we stop its gradient in the perceptron so that the embeddings
can be regarded as input instead of learnable parameters of the
perceptron.

Time Complexity Analysis. During optimization, regarding
the optimization time of MiNet/CoNet as unit "1", and considering
that the additional computation brought by our method mainly
comes from the backward process for the upper gradient, the time
complexity of our method is as follows: In one lower-upper loop,
the model conducts 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 times of lower optimization and 1 up-
per optimization. The original MiNet/CoNet only needs 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
lower backwards. Our method has the additional upper optimiza-
tion which requires (𝐾+2) backwards for the Jacobi calculation
where 𝐾 is the truncated number, so it needs total 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙+𝐾+2
backwards, which results in 𝑂 ((𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙+𝐾+2)/𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) complex-
ity compared to the unit. Since 𝐾 in our experiments is fixed to 3,
our method needs about O(1+5/𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ) complexity. During infer-
ence, we do not change the model structure but only the parameters,
the inference complexity is the same as that of the original model.

4.4 Recommendation Performance
The overall recommendation performance of different models is
presented in Table 1. We have the following observations:
• Our proposed BIAO method brings consistent improve-
ments.Whether utilizing MiNet or CoNet as the base model, our
proposed method brings further improvement to the base model
on all the datasets. Especially under the MiNet on Books-Toys,
Elec-Cloth, and the CoNet on CDs-Cloth and Elec-Cloth settings,
our BIAO method brings more than 10% RelaImpr improvement
without changing model structures.
• Our method has greater potential in tackling less irrele-
vant source-target transfer and cold-start scenarios. It’s
worth noting that our proposed method achieves about 0.3%
absolute AUC improvement in the Books-Movies scenario, but
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Table 1: Overall recommendation performance. We run each method with 5 random seeds and report the mean performance.
The * indicates 0.05 level, paired t-test of our method vs. the best baselines.

Dataset Books-Movies Books-CDs Books-Elec Books-Toys CDs-Cloth CDs-Kitchen Elec-Cloth
Model AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI
MiNet-S 0.7557 0.00% 0.7019 0.00% 0.6585 0.00% 0.6706 0.00% 0.5913 0.00% 0.6161 0.00% 0.6001 0.00%
MiNet-0 0.7508 -1.92% 0.6995 -1.19% 0.6523 -3.91% 0.6658 -2.81% 0.5950 4.05% 0.6094 -5.77% 0.5885 -11.59%
MiNet 0.7616 2.31% 0.7080 3.02% 0.6540 -2.84% 0.6711 0.29% 0.5876 -4.05% 0.6079 -7.06% 0.5966 -3.50%
MiNet+ours 0.7639* 3.21% 0.7145* 6.24% 0.6678* 5.87% 0.6883* 10.38% 0.6020* 11.72% 0.6212* 4.39% 0.6099* 9.79%

CoNet-S 0.7633 0.00% 0.7165 0.00% 0.6758 0.00% 0.6918 0.00% 0.5999 0.00% 0.6465 0.00% 0.6152 0.00%
CoNet-0 0.7643 0.38% 0.7196 1.43% 0.6808 2.84% 0.6927 0.47% 0.6134 13.51% 0.6471 0.41% 0.6206 4.69%
CoNet 0.7693 2.28% 0.7239 3.42% 0.6764 0.34% 0.6989 3.70% 0.6110 11.11% 0.6471 0.41% 0.6238 7.47%
CoNet+ours 0.7721* 3.34% 0.7274* 5.03% 0.6864* 6.03% 0.7048* 6.78% 0.6176* 17.72% 0.6558* 6.35% 0.6308* 13.54%

Table 2: Effectiveness of behavioral perceptron modules. We run each method with 5 seeds and report the mean performance.

Dataset Books-Movies Books-CDs Books-Elec Books-Toys CDs-Cloth CDs-Kitchen Elec-Cloth
Model AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI
MiNet+ours 0.7639 3.21% 0.7145 6.24% 0.6678 5.87% 0.6883 10.38% 0.6020 11.72% 0.6212 4.39% 0.6099 9.79%
w/o global 0.7632 2.93% 0.7110 4.51% 0.6645 3.79% 0.6843 8.03% 0.6016 11.28% 0.6194 2.84% 0.6060 5.89%
w/o user 0.7618 2.39% 0.7050 1.54% 0.6657 4.54% 0.6792 5.04% 0.5910 -0.33% 0.6216 4.74% 0.6048 4.70%

CoNet+ours 0.7721 3.34% 0.7274 5.03% 0.6864 6.03% 0.7048 6.78% 0.6176 17.72% 0.6558 6.35% 0.6308 13.54%
w/o global 0.7715 3.11% 0.7265 4.62% 0.6827 3.92% 0.7032 5.94% 0.6172 17.32% 0.6524 4.03% 0.6266 9.90%
w/o user 0.7692 2.24% 0.7254 4.11% 0.6829 4.04% 0.6935 0.89% 0.6176 17.72% 0.6521 3.82% 0.6263 9.64%

achieves more significant improvement in other scenarios like
Books-Toys and CDs-Cloth. In the Books-Movies setting, the
source domain and target domain information is quite similar,
thus the optimal weights for different behaviors do not have large
differences(which is also validated in 4.5), making the improve-
ment brought by our method comparatively small. However, in
the Books-Toys setting, where only specific categories of books
have intuitive influence on recommendation in toys, our method
brings significant improvement. Additionally, the RelaImpr of
our method in the CDs-Cloth and Elec-Cloth is quite significant
compared to other settings, where target behaviors in these two
settings are quite inadequate, demonstrating the potential of our
method to tackle the cold-start problem.
• Our method has the ability of exploiting the beneficial in-
formation and discarding the harmful information in the
source domain. Note that under the Books-Elec, CDs-Kitchen
and Elec-Cloth settings, both MiNet-0 and MiNet perform worse
than the single-domain MiNet-S. This means both the feature
and the loss from the source domain on average are harmful to
the target domain. However, our method still surprisingly brings
improvement compared to the MiNet-S baseline, indicating the
strong ability of our method to discover the beneficial informa-
tion from the on average harmful source domain behaviors.

4.5 The Learned Behavioral Weight
We record the learned weight of each source behavior loss on the
Books-Movies and Books-Toys dataset with MiNet, and analyze
their statistical characteristics. Figure 3 shows the average weight
of items within each category. We have the following observations:

• The behavioral perceptron selects highly-related behav-
iors from the source domain. For example, on the Books-Toys

dataset, the books with topics about “Children, Education, Hu-
mor, Computer” are highly weighted, indicating that the behavior
of buying these books has greater influence on the user’s behav-
ior in the target toy domain. These highly weighted categories
indeed have higher correlation with toys from human intuitions.
Additionally, the books about “Rental” and “Law” are regarded
as less important to the user’s interest in toys.
• The weight distribution varies with the datasets. On the
Books-Movies dataset, the weights of different categories are
closer to each other, while on the Books-Toys dataset, the weights
of different categories are quite different. It’s not hard to under-
stand this phenomenon. Compared to Books-Toys, Books and
Movies are more similar. Almost for each category in books, we
can find a similar category in Movies. Therefore, different cat-
egories in Books tend to have equal contributions to the target
Movies domain. However, the Books and Toys are two less simi-
lar domains. Only the categories about toys in the Books domain
will have obvious influence, like “Children”.

Children Parenting

Computer
&Tech

Christian

SewingCookbook
Romance

(a) Books-Movies

Computer
&Tech

Education
Children Humor

Rental
Law

(b) Books-Toys

Figure 3: The average weight for items of each category in
the source domain.



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Hong Chen, Xin Wang, Ruobing Xie, Yuwei Zhou, and Wenwu Zhu

Besides the item categories, we also want to know whether the
length of user historical behaviors in the source/target domain has
influence on the learned weights. The x-axis of Figure 4 means the
difference between the user’s source behavior length and the target
length(e.g., if a user has 5 interactions in the source domain and 10
interactions in the target domain, the difference is 5-10=-5). The y-
axis means the learned average weight under each difference value.
We can see that larger difference tends to lead to larger weights.
This phenomenon is also intuitive. If a user has more interactions in
the source domain and fewer interactions in the target domain, the
source behavior of this user has higher probability to be valuable,
which is consistent with [18]. Case analysis of the learned user-
specific importance is given in Appendix B.
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Figure 4: The weight changes with the user source-target
behavior number.

4.6 Behavioral Perceptron Effectiveness
We conduct an ablation study to validate the effectiveness of the
designed Global item importance and the User-specific item impor-
tance. We report the performance of the model that removes any
of the two components in Table 2. The w/o global refers to the
variant that removes Global item importance and w/o user is the
variant that removes the User-specific item importance. The results
show that in almost all the settings, both of the two components
are effective for the cross-domain recommendation.

4.7 Reorder-and-Reuse Strategy Effectiveness
Previous works [2, 19] that utilize bi-level optimization split a small
dataset from the training set, and use this small dataset for upper
optimization. However, our proposed method reuses the whole

Table 3: Effectiveness of the Reorder-and-Reuse strategy. The
top and bottom parts of the table give the results usingMiNet
and CoNet as base models, respectively.

Dataset Books-CDs CDs-Cloth Elec-Cloth
Split AUC RelaI AUC RelaI AUC RelaI
split 0.01 0.7037 0.89% 0.6016 11.28% 0.5996 -0.53%
split 0.05 0.7019 0.00% 0.5982 7.56% 0.5993 -0.80%
split 0.1 0.6960 -2.92% 0.5945 3.50% 0.5970 -3.10%
ours 0.7145 6.24% 0.6020 11.72% 0.6099 9.79%

split 0.01 0.7227 2.88% 0.6176 17.72% 0.6244 8.02%
split 0.05 0.7204 1.79% 0.6160 16.15% 0.6237 7.41%
split 0.1 0.7176 0.52% 0.6114 11.54% 0.6254 8.88%
ours 0.7274 5.03% 0.6176 17.72% 0.6308 13.54%

training set and relies on batch optimization to make the data in the
lower and upper optimization different during training.We compare
our proposed method with the previous methods which utilize
different split ratios. Specifically, we split 0.01, 0.05 and 0.1 of the
whole target set for upper optimization, and the rest 0.99, 0.95 and
0.9 for lower optimization, respectively. Results in Table 3 show that
the previous way to split a small dataset from the whole training set
is not as effective as our proposed reorder-and-reuse method, where
splitting too few samples makes the upper optimization biased and
splitting too many samples does harm to the lower optimization.
In most cases, splitting 0.1 data from the training set results in the
worst performance, indicating that the benefits from weighting the
source behavior cannot compensate for the degradation caused by
worse lower optimization of the target-only parameters \𝑡 . The
proposed simple but effective reorder-and-reuse strategy can also
be applied to other bi-level optimization problems.

4.8 Hyper-parameter Sensitivity
Almost all the hyper-parameters involved in the optimization frame-
work are fixed, except for the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 between two upper optimiza-
tions searched from {20, 100, 500}. Figure 5 shows the impact of
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 on Books-Toys and Books-Elec with bothMiNet and CoNet,
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 set to {20, 100, 200, 300, 400, 500}. A larger 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 makes
𝜙 in the upper optimization update more slowly, but the approx-
imation errors of the implicit gradient will be smaller. Although
the best 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 varies with the base model and the dataset, our
optimization brings consistent improvement with different 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
compared to the original MiNet or CoNet(the dotted line named
dataset w/o ours in the figure). Therefore, our method brings lit-
tle HPO (Hyper-Parameter Optimization) burden for performance
improvement and can be easily adopted.
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Figure 5: Impact of the 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 hyper-parameter, which de-
termines how frequently we conduct the upper optimization.

5 CONCLUSION
In this paper, we propose a behavioral importance-aware optimiza-
tion framework for cross-domain recommendation, which automat-
ically selects the most beneficial behaviors from the source domain
to improve the target recommendation performance. The proposed
framework involves the behavioral perceptron and the bi-level op-
timization based strategy, whose effectiveness has been validated
through extensive experiments. Our proposed method can be com-
bined with various cross-domain recommendation methods that
jointly optimize the source and target loss, serving as a powerful
tool for cross-domain recommendation. Future work like exploring
more effective behavioral perceptron designs is interesting.
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Figure 6: Case study for user-specific importance weights
in Books-Toys. Each sub-figure gives 4 aspects of a source
behavior, i.e., the final learned user-specific weight, the item
in the source behavior, the user’s historical sequences in
the source domain, and the user’s historical sequences in
the target domain. Each item is represented in the form of
category(title) if existed. Case3 and case4 assign high weights
to the source behavior, where in case4 the source candidate
item is related to the target domain and the users’ recent
behaviors, while in case3 the ’Health&Fitness’ source item
is less related to the target domain in global sense but quite
fits the user’s specific interests in both domains.
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Figure 7: Comparison between the reorder-and-reuse strategy
and previous methods.

A DATASET STATISTICS
We provide the data statistics of our experiments in Table 4. We also
conduct several experiments on a more recent backbone DASL [12].
And the results are shown in Table 5. The results further show
that our proposed optimization method can be applied to various
current CDR models.

B USER-SPECIFIC IMPORTANCE CASE STUDY
In section 4.5, we analyze the statistical characteristics of the learned
weights. The learned average weights under each category show
that the global item importance is important. In this section, we
further provide some case studies in the Books-Toys scenario to
analyze the user-specific importance weights in Figure 6. In case1
and case2, the two behaviors are assigned to low user-specific
weights because the source item has very low correlations with
the source historical behaviors and target historical behaviors. For
example, in case2, the candidate source item is about photography,
but the source sequences are almost about novel and the target
sequences are about kid’s toys, making this source behavior less
worth learning. In case3 and case4, the source candidate item has
high correlations with both source and target historical sequences
(highlighted in red), thus are assigned higher weights to learn.
Particularly, in case3, the behavior “Health&Fitness” book in the
source domain intuitively will have little importance to the target
toy domain. However, due to the user’s specific interest in “health”
and “sports” shown in his historical behaviors, it is assigned a
high weight. This phenomenon also indicates the significance of
considering the local user-specific importance.

C COMPARISON BETWEEN PREVIOUS
METHODS AND THE PROPOSED
REORDER-AND-REUSE STRATEGY

Figure 7 presents how previous bi-level optimization methods ob-
tain the developing target dataset and how our proposed reorder-
and-reuse strategy obtains the developing dataset. In previous meth-
ods, they split the original target dataset 𝐵𝑡 into two disjoint dataset
for the lower and upper optimization, respectively. This kind of split
easily causes bias and information loss as analyzed in the paper,
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Table 4: Data Statistics

Books-Movies Books-CDs Books-Elec Books-Toys CDs-Cloth CDs-Kitchen Elec-Cloth
#source behavior 944,533 418,653 735,683 317,646 71,491 160,358 99,594
#target behavior 792,319 380,675 364,267 84,564 36,319 96,670 66,470
#users 37,388 16,738 28,506 7,576 4,283 8,144 8,235
#source item 269,301 191,942 229,189 134,350 26,178 36,018 25,816
#target item 49,273 61,201 52,134 11,567 15,445 22,550 18,703

Table 5: Additional experiments with the DASL backbone.

Model DASL-S DASL-0 DASL DASL+ours
Books-CDs 0.7106 0.7128 0.7100 0.7165
Books-Toys 0.6771 0.6786 0.6734 0.6842

especially in the cross-domain recommendation setting where the
behaviors in the target domain are quite sparse. However, the pro-
posed reorder-and-reuse strategy enables that both the lower and
upper optimization make full use of all the target data, alleviating
the potential bias and information loss.
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